Let S=9+16+29+54+103+...+Tn (i)
S=9+16+29+54+103+...+Tn−1+Tn (ii)
(i)-(ii) ⇒ Tn=9+7+13+25+49+...+(Tn−Tn−1) (iii)
Tn=9+7+13+25+49+...+(Tn−1−Tn−2)+(Tn−Tn−1) (iv)
(iii)-(iv) ⇒ Tn−Tn−1=9+(−2)+6+12+24+...(n−2)terms=7+6[2n−2−1]=6(2)n−2+1
∴ General terms is Tn=6(2)n−1+n+2
Also sun S=∑Tn=6∑2n−1+∑n+∑2=6.2n−12−1+n(n+1)2+2n=6(2n−1)+n(n+5)2