Find the general value of log3(3i). Where i= √−1
Given Let z = log3(3i) = loge(3i)loge3
Convert 3i in the polar form
So write the given complex number in Euler's form.
= 1loge3 [loge(3.eiπ2)]
= 1loge3 [loge3+logeeiπ2] = 1loge3[loge3+iπ2+2nπi] n ∈ I
= 1 + 1loge3(iπ2+2nπi) n ϵ I