1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Strictly Increasing Functions
Find the grea...
Question
Find the greatest and the least values of the following functions.
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
1
on the interval [-1, 5].
Open in App
Solution
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
1
f
′
(
x
)
=
6
x
2
−
6
x
−
12
=
0
⇒
(
x
−
2
)
(
x
+
1
)
=
0
x
=
2
,
−
1
f
′′
(
x
)
=
12
x
−
6
f
′′
(
2
)
=
18
>
0
,Hence
f
(
2
)
=
−
19
is the minimum
f
′′
(
−
1
)
=
−
18
>
0
,Hence
f
(
−
1
)
=
8
is the maximum
Suggest Corrections
0
Similar questions
Q.
Find the greatest and least values of the following function of the indicated intervals:
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
1
on [-2, 5/2];
Q.
Find the greatest and the least values of the following function.
f
(
x
)
=
2
x
3
−
9
x
2
+
12
x
on the interval
[
0
,
3
]
.
Q.
Find the greatest and the least values of the following function.
f
(
x
)
=
−
x
3
+
3
x
2
+
5
on the interval
[
0
,
3
]
.
Q.
Find the greatest and the least values of the following functions.
f
(
x
)
=
3
x
3
−
9
x
2
+
2
on the interval
[
−
1
,
4
]
.
Q.
Find the intervals in which the following functions are increasing or decreasing.
(i) f(x) = 10 − 6x − 2x
2
(ii) f(x) = x
2
+ 2x − 5
(iii) f(x) = 6 − 9x − x
2
(iv) f(x) = 2x
3
− 12x
2
+ 18x + 15
(v) f(x) = 5 + 36x + 3x
2
− 2x
3
(vi) f(x) = 8 + 36x + 3x
2
− 2x
3
(vii) f(x) = 5x
3
− 15x
2
− 120x + 3
(viii) f(x) = x
3
− 6x
2
− 36x + 2
(ix) f(x) = 2x
3
− 15x
2
+ 36x + 1
(x) f(x) = 2x
3
+ 9x
2
+ 12x + 20
(xi) f(x) = 2x
3
− 9x
2
+ 12x − 5
(xii) f(x) = 6 + 12x + 3x
2
− 2x
3
(xiii) f(x) = 2x
3
− 24x + 107
(xiv) f(x) = −2x
3
− 9x
2
− 12x + 1
(xv) f(x) = (x − 1) (x − 2)
2
(xvi) f(x) = x
3
− 12x
2
+ 36x + 17
(xvii) f(x) = 2x
3
− 24x + 7
(xviii)
f
x
=
3
10
x
4
-
4
5
x
3
-
3
x
2
+
36
5
x
+
11
(xix) f(x) = x
4
− 4x
(xx)
f
x
=
x
4
4
+
2
3
x
3
-
5
2
x
2
-
6
x
+
7
(xxi) f(x) = x
4
− 4x
3
+ 4x
2
+ 15
(xxii) f(x) = 5x
3
/2
− 3x
5
/2
, x > 0
(xxiii) f(x) = x
8
+ 6x
2
(xxiv) f(x) = x
3
− 6x
2
+ 9x + 15
(xxv)
f
x
=
x
(
x
-
2
)
2