The ratio in which P(2,1) divides the line segment A(4,2) and B(6,3) is x1−x:x−x2
=4−2:2−6=2:−4
The point Q divides AB in the ratio −m:n=−2:−4=2:4=1:2
Q=(1×5+2×41+2,1×2+2×21+2)=(133,63)=(133,2)
72)If A=(−3,4),B=(2,1), then find the coordinates of the point C on AB produced such that AC=2BC
Given:AC=2BC
⇒ACBC=21
∴C divides AB in the ratio 2:1
Using section formula, we have
(x,y)=(mx2+nx1m+n,my2+ny1m+n)
Given:A=(−3,4),B=(2,1) and m=2,n=1
∴C=(2×2+1×−32+1,2×1+1×42+1)
=(4−33,2+43)
=(13,63)
∴C(x,y)=(13,2)