m=(1,5,1)+k1(1,−2,1)=(1+k15−2k1−1+k1)
∴1+k1−2(5−2k1)+1+k1=0
∴1+k1−10+4k1+1+k1=0
∴6k1=3
∴k1=12
Position vector of the foot of perpendicular
¯¯¯¯¯m=(1+12,5−1,1+12)=(32,4,32)
Now from M is mid point
∴¯¯¯a+¯¯b2=¯¯¯¯¯m
∴a+12=32,b+52=4,c+12=32
∴a=2,b=3,c=2
Required image is at the point A is B(¯¯b)=(2,3,2)