Let P(2,−1,5) be the given point and AB the given line
x−1110=y+2−4=z+8−11=r (say)
Draw PM⊥AB. Produce PM to P′ such that PM=MP′. Then P′ is image of P in AB.
Any point on AB is M(10r+11,−4r−2,−11r−8)
Then, dr's of MP are 10r+11−2,−4r−2−(−1),−11r−8−5
i.e., 10r+9,−4r−1,−11r−13
and the d.c's of AB are proportional to 10,−4,−11
∴ MP⊥AB
∴ 10(10r+9)−4(−4r−1)−11(−11r−13)=0
⇒ r=−1
From equation (i), M≡(1,2,3)
Let P′ be the point (α,β,γ)
Simce M(1,2,3) is the mid point of PP′
∴ ∴1=α+22,2=β−12,3=γ+52⇒α=0,β=5,γ=1
∴ P′≡(0,5,1)
thus P′≡(0,5,1) is the image of P(2,−1,5) in the line AB.
Also, MP=√(1−2)2+(2+1)2+(3−5)2=√1+9+4=√14