Find the image of the point (−8,12) with respect to the line mirror 4x+7y+13=0.
The correct option is C (−16,−2)
M=(a−82,b+122) is the mid point of AA'.
It lies on 4x+7y+13=0
So, ⇒4(a−82)+7(b+122)+13=0
⇒2(a−8)+7b+842+13=0
⇒4a−32+7b+84+26=0
∴4a+7b+78=0......()
Since AA' ⊥ PQ, so
Slope (PQ) × Slope (AA') = -1
−47×b−12a+8=−1
−4b+48=−7a−56
7a−4b+104=0......(2)
Multiplying equations (1) by 4 and equation (2) by 7, we get
16a+28b=−312
49a−28b=−728
By adding above two equations, we get
16a+49a=−312−728
65a=−1040
∴a=−16
Substitute a=−16 in equation (1), we get
⇒4(−16)+7b+78=0
−64+7b+78=0
7b+14=0
7b=−14
∴b=−2
Hence, required image point is (−16,−2).