Find the imaginary part of the complex number (1+i)(1−i)
z = (1+i)(1−i)
Taking loge on both sides
log z = (1-i) log(1+i)
= (1-i) loge(√2.eiπ4)
= (1-i) [ loge√2+logeeiπ4]
= (1-i) [12log2+iπ4]
= 12loge2+iπ4−i2loge2+π4
= (12loge2+π4)+i(π4−12loge2)
Imaginary part of Z {Im(z)} = π4−log√2