x(1−xny).dydx+y=0
⇒dydx=y/xx/ny−1=y/x1n.(y/x)−1
y=vx
⇒dydx=v+xdvdx
⇒v+xdvdx=v1nv−1
⇒xdvdx=v⎡⎢ ⎢ ⎢⎣11nv−1−1⎤⎥ ⎥ ⎥⎦
⇒xdvdx=v[2nv−11−nv]
1−nvv.(2nv−1)dv=dxx
⇒nv−1v.(2nv−1)dv=−dxx
(2nv−1)−(nv)v(2nv−1)=−dxx
⇒∫1vdv−∫n(2nv−1)dv=∫−dxx
⇒lnv−ln(2nv−1)2n=−lnx+c
⇒ln(vn)−ln(2nv−1)2n=c
⇒ln(y)−ln(2ny/n−1)2n=c
Atx=1,y=1/e
Solving further we get ; c=ln(2n/e−1)2n
=y2n2nyn−1=2ne−1