Consider the given integral.
I=∫dx√9x−4x2
I=∫dx√9x−4x2+8116−8116
I=∫dx√(94)2−(2x−94)2
Put
t=2x−94
dt2=dx
Therefore,
I=12∫dt√(94)2−t2
I=12sin−1⎛⎜ ⎜ ⎜⎝t94⎞⎟ ⎟ ⎟⎠+C
Put the value of t in above expression, we get
I=12sin−1⎛⎜ ⎜ ⎜ ⎜⎝4(2x−94)9⎞⎟ ⎟ ⎟ ⎟⎠+C
I=12sin−1((8x−9)9)+C
Hence, the value of this integral is 12sin−1((8x−9)9)+C.