The correct option is C 12ln(x2+2x−4)+C
Given, f(x)=x+1x2+2x−4
So, to integrate the given function we use substitution method.
Let t=x2+2x−4⇒ dtdx=2x+2=2(x+1)
Or, dt2=(x+1)dx
Thus, substituting this value in the given function we have,
∫x+1x2+2x−4dx=∫12tdt=12lnt+C
⇒ 12ln(x2+2x−4)+C