Find the integral of 1x2+a2 with respect to x and hence find ∫1x2−6x+13dx.
Open in App
Solution
∫1x2+a2dx=∫asec2θdθa2tanθ+a2 Put x=atanθdx=asec2θdθ =∫asec2θdθa2(1+tan2θ)=∫sec2θdθasec2θ=1a∫dθ=1aθ+c =1atan−1xa+c Also ∫1x2−6x+13dx=∫dxx2−6x+9+4=∫dx(x−3)2+22=∫dtt2+22 ..... where t=x−3dt=dx =12tan−1(x−32)+C.