∫f(x)dx=∫2x+23x2+2x+1dx
2x+23x2+2x+1=Ad(3x2+2x+1)dx+B3x2+2x+1
⇒2x+2=A(6x+2)+B
On comparing the coefficient of constant and x term, we get,
6A=2 and 2A+B=2
⇒A=13 and B=43
⇒∫f(x)=13∫6x+23x2+2x+1dx+43∫dx3x2+2x+1
⇒∫f(x)=13I1+43I2+C
I1=∫6x+23x2+2x+1dx
substitute, 3x2+2x+1=t⇒(6x+2)dx=dt
⇒I1=∫dtt=loge(3x2+2x+1)
I2=∫dx3x2+2x+1
=13∫dxx2+2⋅x⋅13+(13)2−19+13
=13∫dx(x+13)2+(√23)2
=13×3√2tan−1(3x+1√2)
=1√2tan−1(3x+1√2)
∴f(x)=13I1+43I2+C
=13loge(3x2+2x+1)+2√23tan−1(3x+1√2)+C