Find the integral of sinx-cosx1+sinxcosxwith limits zero to π2.
Find the integral of the given function.
Given: ∫0π2sinx-cosx1+sinxcosxdx
Let, I=∫0π2sinx-cosx1+sinxcosxdx
We know that ∫0af(x)dx=∫0af(a-x)dx
By using this we can write,
I=∫0π2sinπ2-x-cosπ2-x1+sinπ2-xcosπ2-xdx⇒I=∫0π2cosx-sinx1+cosxsinxdx[∵sin(π2-x)=cosxandcos(π2-x)=sinx]⇒I=-∫0π2sinx-cosx1+cosxsinxdx⇒I=-I[∵∫0π2sinx-cosx1+cosxsinxdx=I]⇒I+I=0⇒2I=0⇒I=0
∴∫0π2sinx-cosx1+sinxcosxdx=0
Hence, the integral of sinx-cosx1+sinxcosxwith limits zero to π2 is 0
What is the integral of limits 1 to 2 of function 1/x(1+logx)2