wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of sinx-cosx1+sinxcosxwith limits zero to π2.


Open in App
Solution

Find the integral of the given function.

Given: 0π2sinx-cosx1+sinxcosxdx

Let, I=0π2sinx-cosx1+sinxcosxdx

We know that 0af(x)dx=0af(a-x)dx

By using this we can write,

I=0π2sinπ2-x-cosπ2-x1+sinπ2-xcosπ2-xdxI=0π2cosx-sinx1+cosxsinxdx[sin(π2-x)=cosxandcos(π2-x)=sinx]I=-0π2sinx-cosx1+cosxsinxdxI=-I[0π2sinx-cosx1+cosxsinxdx=I]I+I=02I=0I=0

0π2sinx-cosx1+sinxcosxdx=0

Hence, the integral of sinx-cosx1+sinxcosxwith limits zero to π2 is 0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon