wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function: cos 2x cos 4x cos 6x

Open in App
Solution

To find: cos 2x cos 4x cos 6xdx

Multiply and divide by 2

=22(cos 2x cos 4x cos 6x)dx

=12[(2 cos 2x cos 4x) cos 6x]dx

=12(cos 6x+cos 2x) cos 6x dx

[2 cos A cos B=cos(A+B)+cos(AB) cos(x)=cos x]

=12[(cos 6x)2+(cos 2x.cos 6x)] dx

Multiply and divide by 2

=14[2 cos2 6x+2(cos 2x.cos 6x)] dx

=14[1+cos 12x+(cos 8x+cos 4x)] dx

[1+cos 2θ=2 cos2θ]

=14[1 dx+cos 12x dx+cos 8x dx+cos 4x dx]

=14[x+sin 12x12+sin 8x8+sin 4x4]+C

Where C is constant of integration.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon