To find: ∫cos 2x cos 4x cos 6xdx
Multiply and divide by 2
=22∫(cos 2x cos 4x cos 6x)dx
=12∫[(2 cos 2x cos 4x) cos 6x]dx
=12∫(cos 6x+cos 2x) cos 6x dx
[∵2 cos A cos B=cos(A+B)+cos(A−B) cos(−x)=cos x]
=12∫[(cos 6x)2+(cos 2x.cos 6x)] dx
Multiply and divide by 2
=14∫[2 cos2 6x+2(cos 2x.cos 6x)] dx
=14∫[1+cos 12x+(cos 8x+cos 4x)] dx
[∵1+cos 2θ=2 cos2θ]
=14[∫1 dx+∫cos 12x dx+∫cos 8x dx+∫cos 4x dx]
=14[x+sin 12x12+sin 8x8+sin 4x4]+C
Where C is constant of integration.