cosx−sinx1+sin2x
=cosx−sinxsin2x+cos2x+2sinxcosx
=cosx−sinx(cosx+sinx)2
On integrating, we get
∫cosx−sinx(cosx+sinx)2dx
Let cosx+sinx=t --(1)
Then,
ddx(cosx+sinx)=ddxt
⇒−sinx+cosx=dtdx
⇒(cosx−sinx)dx=dt---(2)
Now,
∫cosx−sinx(cosx+sinx)2dx
=∫dtt2
=∫t−2dt [Since, from (1) and (2)]
=t−2+1−2+1+C [Since, ∫xn=xn+1n+1,n≠−1]
=−1t+C
=−1cosx+sinx+C [Where, C is any real constant]
∴∫cosx−sinx(cosx+sinx)2dx=−1cosx+sinx+C