We have,
I=∫sin2x1+cosxdx
We know that
cosx=1−2sin2x2=2cos2x2−1
sinx=2sinx2cosx2
Therefore,
I=∫(2sinx2cosx2)21+2cos2x2−1dx
I=∫4sin2x2cos2x22cos2x2dx
I=2∫sin2x2dx
I=∫(1−cosx)dx
I=x−sinx+C
Hence, this is the answer.