Consider the given integral.
I=∫sin2(2x+5)dx
Let t=2x+5
dtdx=2+0
dt2=dx
Therefore,
I=12∫sin2(t)dt
I=14∫(1−cos2t)dt
I=14[t−sin2t2]+C
On putting the value of t, we get
I=14[2x+5−sin2(2x+5)2]+C
I=14[2x+5−sin(4x+10)2]+C
Hence, this is the answer.