wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function
sin3(2x+1)

Open in App
Solution

Consider the given integral.

I=sin3(2x+1)dx

Let t=2x+1

dtdx=2+0

dt2=dx

Therefore,

I=12sin3(t)dt

I=12(3sintsin3t)4dt

I=18[3cost+cos3t3]+C

On putting the value of t, we get

I=18[3cos(2x+1)+cos3(2x+1)3]+C

I=18[cos(6x+3)33cos(2x+1)]+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon