Consider the given integral.
I=∫sin3(2x+1)dx
Let t=2x+1
dtdx=2+0
dt2=dx
Therefore,
I=12∫sin3(t)dt
I=12∫(3sint−sin3t)4dt
I=18[−3cost+cos3t3]+C
On putting the value of t, we get
I=18[−3cos(2x+1)+cos3(2x+1)3]+C
I=18[cos(6x+3)3−3cos(2x+1)]+C
Hence, this is the answer.