Consider the given integral.
I=∫sin3xcos3xdx
We know that
sin2x+cos2x=1
Therefore,
I=∫sin3xcosx(1−sin2x)dx
Let t=sinx
dt=cosxdx
Therefore,
I=∫t3(1−t2)dt
I=∫(t3−t5)dt
I=t44−t66+C
On putting the value of t, we get
I=sin4x4−sin6x6+C
Hence, this is the answer.