To find: ∫sin3x cos3x dx
=∫sin x.sin2x cos3x dx
=∫sin x(1−cos2x) cos3x dx
=∫(1−cos2x) cos3x.sin x dx
Let cos x=t
Differentiating w.r.t. x
⇒sin x=dtdx⇒sin x dx=−dt
Thus,
∫(1−cos2x)cos3x.sin x dx
=−∫(1−t2)t3dt
=∫(t5−t3)dt
=∫t5dt−∫t3dt
=t66−t44+C
=cos6x6−cos44+C [∵t=cos x]
Where C is constant of integration.