Consider the given function.
I=∫sin4xsin8xdx
I=∫sin4xsin2(4x)dx
I=∫sin4x(2sin4xcos4x)dx
I=2∫sin24xcos4xdx
Let t=sin4x
dtdx=4cos4x
dt4=cos4xdx
Therefore,
I=24∫t2dt
I=12[t33]+C
I=[t36]+C
On putting the value of t, we get
I=sin34x6+C
Hence, this is the answer.