To find: ∫sin x sin 2x sin 3x dx
=∫(sin x sin 2x)sin 3x dx
Multiply and divide by 2
=12∫(2sin x sin 2x)sin 3x dx
=12∫[cos(x−2x)−cos(x+2x)] sin 3x dx
[∵2 sin A sin B=cos(A−B)−cos(A+B) cos(−x)=cos x]
=12∫(cos x−cos 3x)sin 3x dx
=12∫(cos x.sin 3x−cos 3x.sin 3x)dx
Again, multiply and divide by 2
=14∫(2 cos x.sin 3x−2 cos 3x.sin 3x)dx
=14∫(2 sin 3x.cos x−sin 6x)dx
[∵sin 2x=2 sin x cos x]
=14∫(2 sin 3x.cos x−sin 6x)dx
[∵2 sin A cos B=sin(A+B)+sin(A−B)]
=14[sin(3x+x)+sin(3x−x)−sin 6x]dx
=14[sin 4x+sin 2x−sin 6x]dx
=14[sin 4x dx+sin 2x dx−sin 6x dx]dx
=14[(−cos 4x4)+(−cos 2x2)−(−cos 6x6)]+C
=14[−cos 4x4−cos 2x2+cos 6x6]+C
=14[cos 6x6−cos 4x4−cos 2x2]+C
Where C is constant of integration.