wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function: sin x sin 2x sin 3x

Open in App
Solution

To find: sin x sin 2x sin 3x dx

=(sin x sin 2x)sin 3x dx

Multiply and divide by 2

=12(2sin x sin 2x)sin 3x dx

=12[cos(x2x)cos(x+2x)] sin 3x dx

[2 sin A sin B=cos(AB)cos(A+B) cos(x)=cos x]

=12(cos xcos 3x)sin 3x dx

=12(cos x.sin 3xcos 3x.sin 3x)dx

Again, multiply and divide by 2

=14(2 cos x.sin 3x2 cos 3x.sin 3x)dx

=14(2 sin 3x.cos xsin 6x)dx

[sin 2x=2 sin x cos x]

=14(2 sin 3x.cos xsin 6x)dx

[2 sin A cos B=sin(A+B)+sin(AB)]

=14[sin(3x+x)+sin(3xx)sin 6x]dx

=14[sin 4x+sin 2xsin 6x]dx

=14[sin 4x dx+sin 2x dxsin 6x dx]dx

=14[(cos 4x4)+(cos 2x2)(cos 6x6)]+C

=14[cos 4x4cos 2x2+cos 6x6]+C

=14[cos 6x6cos 4x4cos 2x2]+C

Where C is constant of integration.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon