Find the Integral of the given function w.r.t x
Y=3x2−1√x
3x3−2√x + c
x3−2√x
6x+12(x)3/2
x3−2√x+c
∫(3x2−1√x)dx = ∫3x2dx−∫1√xdx
3×x33+c1−∫x−12dx (∵∫xndx=xn+1n+1+c)
x3+c1−2√x+c2
⇒x3−2√x+c(∵c1+c2=c)
Find the integral of the given function w.r.t x
y=13√x2
Find the integral of the given function w.r.t - x
y=x−1x+1x2
y=sin(8x)+x
y=sin2√x2√x
y=sin 6x+10sec2x−cosec xcot x