Find the integral of the given function w.r.t - x
y=e2x+1x2
Integration both side w.r.t. 'x',
I=∫y.dx=∫⟮e2x+1x2⟯dx=e2x2+x−2+1−2+1+c[∵∫eax=eaxa+c]
I=e2x2−1x+c
Let I =∫exe4x+e2x+1dx.J=∫e−xe−4x+e−2x+1dx,Then, for an arbitrary constant c, the value of J-I equals
∫e2x [sec 2x + sec 2x.tan 2x]dx