Find the integral of the given function w.r.t - x
y=e2x+1x2
2e2x−1x+c
ex2−1x+c
e2x2−1x+c
e2x−1x+c
Integration both side w.r.t. 'x',
I=∫y.dx=∫⟮e2x+1x2⟯dx=e2x2+x−2+1−2+1+c[∵∫eax=eaxa+c]
I=e2x2−1x+c
Find the integral of the given function w.r.t x
y=13√x2
y=e(5x+10)