Find the integral of the given function w.r.t x
y=sin(8x)+x
−cos 8x8+x22+c
8 cos 8x8+1+c
cos 8x8+x22+c
cos 8x8+1+c
∫(sin(8x)+x)dx=∫sin(8x)dx+∫(x)dx
8x = t
8dx = dt
dx = dt8
⇒∫sin t dt8+x22+c1 (∵∫xndx=xn+1n+1)+c
⇒−cos t8+co+x22+c (∵∫sin t dt=−cos t)
−cos 8x8+x22+c (c=c0+c1)
Find the integral of the given function w.r.t - x
y=sin2√x2√x
Find the Integral of the given function w.r.t x
Y=3x2−1√x
y=x−1x+1x2
Integrate the following functions w.r.t. x.
∫sin8x−cos8x1−2 sin2 x cos2 xdx.