Find the integral of xlogx(1+x2)2 under the limits 0 to infinity.
Find the integral of the given function
Given integral:∫0∞xlogx(1+x2)2dx
Let I=∫0∞xlogx(1+x2)2dx and x=1t
So dx=-1t2dt, for x=0,t→∞ , for x→∞,t=0 and we get
I=∫∞01tlog1t-1t21+1t22dt⇒I=∫∞01tlog1t-1t2t2+1t42dt⇒I=∫∞01t-logt-1t2t2+1t42dt∵log1t=-logt⇒I=∫∞0tlogtt2+12dt⇒I=-∫0∞tlogt1+t22dt⇒I=-I⇒2I=0⇒I=0∴∫0∞xlogx(1+x2)2dx=0
Hence, the integral of xlogx(1+x2)2 under the limits 0 to infinity is 0.
Find the value of limit ( tn / et ) (t tends to infinity) and then prove that
-
∫ (tn / et ) dt = n factorial
limit of integration is from 0 to infinity