Consider the given integral.
I=∫sin−1(cosx)dx
We know that,
sin(π2−θ)=cosθ
sin−1(sinx)=x
Therefore,
I=∫sin−1[sin(π2−x)]dx
I=∫(π2−x)dx
I=π2∫dx−∫xdx
I=π2x−x22+C
Find the integrals of the functions. ∫sin−1(cosx)dx.
Find the integrals of the functions. ∫ sin x sin 2x sin 3x dx