wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the functions.
cos2x cos 4x cos 6x dx.

Open in App
Solution

cos2x cos4x cos6x dx=cos2x[12{cos(4x+6x)+cos(4x6x)}]dx[2cosAcosB=cos(A+B)+cos(AB)]=12[cos2x cos10x+cos2xcos(2x)]dx=12[cos2x cos10x+cos22x]dx [cos(θ)=cosθ]=12[12(cos(2x+10x)+cos(2x10x))+(1+cos4x2)]dx[cos2θ=2cos2θ1]=14[cos12x+cos8x+1+cos4x]dx=14[sin12x12+sin8x8+x+sin4x4]+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon