Find the integrals of the functions.
∫cos2x cos 4x cos 6x dx.
∫cos2x cos4x cos6x dx=∫cos2x[12{cos(4x+6x)+cos(4x−6x)}]dx[∴2cosAcosB=cos(A+B)+cos(A−B)]=12∫[cos2x cos10x+cos2xcos(−2x)]dx=12∫[cos2x cos10x+cos22x]dx [∵cos(−θ)=cosθ]=12∫[12(cos(2x+10x)+cos(2x−10x))+(1+cos4x2)]dx[∴cos2θ=2cos2θ−1]=14∫[cos12x+cos8x+1+cos4x]dx=14[sin12x12+sin8x8+x+sin4x4]+C