wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the functions.
cos42xdx.

Open in App
Solution

cos42xdx=(cos22x)2dx=(1+cos4x2)2dx=14(1+cos4x)2dx=14(1+cos24x+2cos4x)dx=14[1dx+cos24xdx+2cos4xdx]=14[1dx+1+cos8x2dx+2cos4xdx](cos2x=1+cos2x2)=14[1dx+12(1dx+cos8xdx)+2cos4xdx]=14[x+12{x+sin8x8}+2sin4x4]+C=14x+x8+sin8x64+sin4x8+C=[3x8+sin8x64+sin4x8]+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon