Find the integrals of the functions.
∫cos42xdx.
∫cos42xdx=∫(cos22x)2dx=∫(1+cos4x2)2dx=14∫(1+cos4x)2dx=14∫(1+cos24x+2cos4x)dx=14[∫1dx+∫cos24xdx+2∫cos4xdx]=14[∫1dx+∫1+cos8x2dx+2∫cos4xdx](∴cos2x=1+cos2x2)=14[∫1dx+12(∫1dx+∫cos8xdx)+2∫cos4xdx]=14[x+12{x+sin8x8}+2sin4x4]+C=14x+x8+sin8x64+sin4x8+C=[3x8+sin8x64+sin4x8]+C