Find the integrals of the functions. ∫(1−cosx)1+cosxdx.
∫(1−cosx)1+cosxdx=∫2sin2x22cos2x2dx=∫tan2x2dx[∵1−cosx=2sin2x2 and 1+cosx=2cos2x2]=∫(sec2x2−1)dx [∴tan2θ=sec2θ−1]=∫sec2x2dx−∫1dx=tanx212−x+C(∴∫sec2asdx=tanaxa)=2tanx2−x+C
Find the integrals of the functions. ∫cosx1+cosxdx.
Find the integrals of the functions. ∫1cos(x−a)cos(x−b)dx.