Find the integrals of the functions.
∫1sinx cos3xdx.
Let I=∫1sinx cos3xdx=∫cosxsinxsec4xdx
=∫sec2xsec2xtanxdx=∫(1+tan2x)sec2xtanxdx (∵sec2x=1+tan2x)Putting tanx=t⇒sec2x=dtdx⇒dx=dtsec2x∴I=∫[1+t2t]sec2xdtsec2x=∫1+t2tdt=∫[1t+t]dt=log|t|+t22+C⇒log|tanx|+tan2x2+C