wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the functions.
cosxsinx1+sin2xdx.

Open in App
Solution

cosxsinx1+sin2xdx.
Let I=cosxsinx1+sin2xdx=cosxsinxsin2x+cos2x+2sinx cosxdx
[sin2x+cos2x=1.sin2x=2sinx cosx]=cosxsinx(sinx+cosx)2dxLet cosx+sinx=tsinx+cosx=dtdxdx=dt(cosxsinx)I=cosxsinxt2.dt(cosxsinx)=1t2=t2dt=t2+12+1+C=1cosx+sinx+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon