wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the functions.
sin x sin 2x sin 3x dx

Open in App
Solution

sinx sin2x sin3xdx=12(2sin3x sinx)sin2xdx[2sinAsinB=cos(AB)cos(A+B)]=12(cos2xcos4x)sin2xdx=142sin2x cos2x2cos4x sin2xdx=14(sin4xsin0)(sin6xsin2x)dx[2sinAcosB=sin(A+B)+sin(AB)2cosAsinB=sin(A+B)sin(AB)]14(sin4xsin6x+sin2x)dx=14{cos4x4(cos6x)6+(cos2x)2}+C


flag
Suggest Corrections
thumbs-up
49
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon