Find the integrals of the functions.
∫ sin x sin 2x sin 3x dx
∫sinx sin2x sin3xdx=12∫(2sin3x sinx)sin2xdx[∵2sinAsinB=cos(A−B)−cos(A+B)]=12∫(cos2x−cos4x)sin2xdx=14∫2sin2x cos2x−2cos4x sin2xdx=14∫(sin4x−sin0)−(sin6x−sin2x)dx[∵2sinAcosB=sin(A+B)+sin(A−B)2cosAsinB=sin(A+B)−sin(A−B)]14∫(sin4x−sin6x+sin2x)dx=14{−cos4x4−(−cos6x)6+(−cos2x)2}+C