tan4x=tan2x⋅tan2x
=(sec2x−1)tan2x=sec2xtan2x−tan2x
=sec2xtan2x−(sec2x−1)
=sec2xtan2x−sec2x+1
∴∫tan4xdx=∫sec2xtan2xdx−∫sec2xdx+∫1⋅dx
=∫sec2xtan2xdx−tanx+x+C .........(i)
Consider ∫sec2xtan2xdx
Let tanx=t⇒sec2xdx=dt
⇒∫sec2xtan2xdx=∫t2dt=t33=tan3x3
From equation (1), we obtain
∫tan4xdx=13tan3x−tanx+x+C