x2(x2−1)dydx+x(x2+1)y=x2−1
⇒dydx+x2+1x(x2−1)y=1x2
⇒dydx+(2x2−(x2−1)x(x2−1))y=1x2
⇒dydx+(2xx2−1−1x)y=1x2
Comparing above equation with dydx+Py=Q, we get
P=2xx2−1−1x
Integrating both the sides
∫P dx=∫(2xx2−1−1x)dx
=log(x2−1)−log(x)
=log(x2−1x)
∴I.F.=e∫P dx
=elog⎛⎜⎝x2−1x⎞⎟⎠
=x2−1x
=x−1x