wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of cosecxlogtanx2dx.


Open in App
Solution

Find the integral of the given function.

Given integral: cosecxlogtanx2dx.

Let, logtanx2=t

By differentiating both sides we get,

12sec2x2tanx2dx=dt12sec2x2sinx2cosx2dx=dt12sec2x2sinx2secx2dx=dtsecx22sinx2dx=dt12sinx2cosx2dx=dt1sinxdx=dt[sin2θ=2sinθcosθ]cosecxdx=dt

So, cosecxlogtanx2dx=dtt[logtanx2=tandcosecxdx=dt]

=log|t|+C, where C is the integration constant.

=loglog(tanx2)+C[log(tanx2)=t]

cosecxlogtanx2dx=loglog(tanx2)+C

Hence, the integral of cosecxlogtanx2dx is loglog(tanx2)+C, where C is the integration constant.


flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon