Find the integral of ∫cosecxlogtanx2dx.
Find the integral of the given function.
Given integral: ∫cosecxlogtanx2dx.
Let, logtanx2=t
By differentiating both sides we get,
12sec2x2tanx2dx=dt⇒12sec2x2sinx2cosx2dx=dt⇒12sec2x2sinx2secx2dx=dt⇒secx22sinx2dx=dt⇒12sinx2cosx2dx=dt⇒1sinxdx=dt[∵sin2θ=2sinθcosθ]⇒cosecxdx=dt
So, ∫cosecxlogtanx2dx=∫dtt[∵logtanx2=tandcosecxdx=dt]
=log|t|+C, where C is the integration constant.
=loglog(tanx2)+C[∵log(tanx2)=t]
∴∫cosecxlogtanx2dx=loglog(tanx2)+C
Hence, the integral of ∫cosecxlogtanx2dx is loglog(tanx2)+C, where C is the integration constant.