∣∣
∣∣cosxsinx1sinxcosx1cos(x+y)sin(x−y)0∣∣
∣∣[sinx.sin(x−y)−cos.cos(x+y)−[cosx.sin(x−y)−sinx.cos(x+y)]=sin(x−y)[sinx−cosx]+cos(x+y)[−cosx+sinx]=(sinx−cosx)[sin(x−y)+cos(x+y)](sinx−cosx)[sinx.dy−cosx.siny+cosx.cosy−sinx.siny](sinx−cosx)(cosy−siny)(sinx+cosx)=sin2−cos2x(cosy−siny)
−cos2x(cosy−siny)√2cos2x(1siny√2−1cosy√2)=√2cos 2x.cos(y+π4)[−√2,√2]