wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the interval in which ∣ ∣cosxsinx1sinxcosx1cos(x+y)sin(xy)0∣ ∣ lies.

Open in App
Solution

∣ ∣cosxsinx1sinxcosx1cos(x+y)sin(xy)0∣ ∣[sinx.sin(xy)cos.cos(x+y)[cosx.sin(xy)sinx.cos(x+y)]=sin(xy)[sinxcosx]+cos(x+y)[cosx+sinx]=(sinxcosx)[sin(xy)+cos(x+y)](sinxcosx)[sinx.dycosx.siny+cosx.cosysinx.siny](sinxcosx)(cosysiny)(sinx+cosx)=sin2cos2x(cosysiny)
cos2x(cosysiny)2cos2x(1siny21cosy2)=2cos 2x.cos(y+π4)[2,2]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon