When
(x−a)(x−b)>0 with
a<b, x<a or
x>b.When (x−a)(x−b)<0 with a<b,a<x<b.
f(x)=2x3−24x+107 [ Given ]
Differentiating both sides,
⇒ f′(x)=6x2−24
⇒ f′(x)=6(x2−4)
⇒ f′(x)=6(x+2)(x−2)
For f(x) to be increasing, we must have
f′(x)>0
⇒ 6(x+2)(x−2)>0
⇒ (x+2)(x−2)>0
⇒ x<−2 or x>2
⇒ x∈(−∞,−2)∪(2,∞)
So, f(x) is increasing on x∈(−∞,−2)∪(2,∞).
For f(x) to be decreasing, we must have
f′(x)<0
⇒ 6(x+2)(x−2)<0
⇒ (x+2)(x−2)<0
⇒ −2<x<2
⇒ x∈(−2,2)
So, f(x) is decreasing on x∈(−2,2).