3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative from First Principle
Find the inte...
Question
Find the interval in which the following function is increasing or decreasing.
f
(
x
)
=
6
+
12
x
+
3
x
2
−
2
x
3
Open in App
Solution
We have
f
(
x
)
=
6
+
12
x
+
3
x
2
−
2
x
3
f
(
x
)
=
0
+
12
+
6
x
−
6
x
2
for critical points, put
f
′
(
x
)
=
0
i.e.
12
+
6
x
−
6
x
2
=
0
x
2
−
x
−
2
=
0
(
x
−
2
)
(
x
+
1
)
=
0
x
=
2
,
−
1
clearly,
f
′
(
x
)
>
0
if
−
1
<
x
<
2
f
′
(
x
)
<
0
if
x
<
−
1
&
x
>
2
Thus ,
f
(
x
)
increases in
(
−
1
,
2
)
, decreases in
(
−
∞
,
−
1
)
∪
(
2
,
∞
)
Suggest Corrections
0
Similar questions
Q.
Find the interval in which the following function is increasing or decreasing.
f
(
x
)
=
2
x
3
−
12
x
2
+
18
x
+
15
Q.
Find the interval in which the following function is increasing or decreasing.
f
(
x
)
=
2
x
3
−
24
x
+
7
Q.
Find the interval in which the function
f
(
x
)
=
−
2
x
3
−
9
x
2
−
12
x
+
1
is strictly increasing or decreasing
Q.
Find the intervals in which the following functions are increasing or decreasing.
(i) f(x) = 10 − 6x − 2x
2
(ii) f(x) = x
2
+ 2x − 5
(iii) f(x) = 6 − 9x − x
2
(iv) f(x) = 2x
3
− 12x
2
+ 18x + 15
(v) f(x) = 5 + 36x + 3x
2
− 2x
3
(vi) f(x) = 8 + 36x + 3x
2
− 2x
3
(vii) f(x) = 5x
3
− 15x
2
− 120x + 3
(viii) f(x) = x
3
− 6x
2
− 36x + 2
(ix) f(x) = 2x
3
− 15x
2
+ 36x + 1
(x) f(x) = 2x
3
+ 9x
2
+ 12x + 20
(xi) f(x) = 2x
3
− 9x
2
+ 12x − 5
(xii) f(x) = 6 + 12x + 3x
2
− 2x
3
(xiii) f(x) = 2x
3
− 24x + 107
(xiv) f(x) = −2x
3
− 9x
2
− 12x + 1
(xv) f(x) = (x − 1) (x − 2)
2
(xvi) f(x) = x
3
− 12x
2
+ 36x + 17
(xvii) f(x) = 2x
3
− 24x + 7
(xviii)
f
x
=
3
10
x
4
-
4
5
x
3
-
3
x
2
+
36
5
x
+
11
(xix) f(x) = x
4
− 4x
(xx)
f
x
=
x
4
4
+
2
3
x
3
-
5
2
x
2
-
6
x
+
7
(xxi) f(x) = x
4
− 4x
3
+ 4x
2
+ 15
(xxii) f(x) = 5x
3
/2
− 3x
5
/2
, x > 0
(xxiii) f(x) = x
8
+ 6x
2
(xxiv) f(x) = x
3
− 6x
2
+ 9x + 15
(xxv)
f
x
=
x
(
x
-
2
)
2