We have,
f(x)=(x+1)3(x−3)3
f′(x)=3(x+1)2(x−3)3+3(x−3)2(x+1)3
=3(x+1)2(x−3)2[x−3+x+1]
=3(x+1)2(x−3)2(2x−2)
=6(x+1)2(x−3)2(x−1)
Now,
f′(x)=0⇒x=−1,3,1
The points x=−1,x=1, and x=3 divide the real line into four disjoint intervals
i.e.,(−∞,−1),(−1,1),(1,3) and (3,∞).
In intervals (−∞,−1) and (−1,1), f′(x)=6(x+1)2(x−3)2(x−1)<0
∴ f is strictly decreasing in intervals (−∞,−1) and (−1,1).
In intervals (1,3) and (3,∞)f′(x)=6(x+1)2(x−3)2(x−1)>0
∴ f is strictly increasing in intervals (1,3) and (3,∞).