f(x)=sin3x where x∈[0,π2]
f′(x)=3cos3x
Put f′(x)=0
⇒cos3x=0
⇒3x=π2,3π2
⇒x=π6∈[0,π2],π2∈[0,π2]
∴ both values of x are valid.
Since x=π6 divide the interval [0,π2] in to two disjoint intervals [0,π6) and (π6,π2]
Case:1
In x∈(0,π6)
0<x<π6
3×0<3x<3π6
0<3x<π2
So, when x∈(0,π6)⇒3x∈(0,π2)
And we know that
cosθ>0 for θ∈(0,π2)
⇒cos3x>0 for 3x∈(0,π2)
⇒3cos3x>0 for x∈(0,π6)
f′(x)>0 for x∈(0,π6)
At x=0,f′(x)=3cos0=3×1=3
At x=π6,f′(x)=3cos(3×π6)=3×0=0
Since f′(x)≥0 for x∈[0,π6]
Thus, f(x) is increasing for x∈[0,π6]