wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the interval on which the following function are strictly increasing & strictly decreasing.
f(x)=4sinx2xxcosx2+cosx,0x2π

Open in App
Solution

Wehavef(x)=4sinx2xxcosx2+cosxsince,wehavetofindincrasinganddecreasingweconsidertheopeninterval(0,2π)Atfirstfindingf(x)f(x)=4sinx2xxcosx2+cosx=4sinxx(2+cosx)2+cosx=4sinx2+cosxx(2+cosx)2+cosx=4sinx2+cosxxTherefore,f(x)=ddx(4sinx2+cosxx)=ddx(4sinx2+cosx)d(x)dx=ddx(4sinx2+cosx)1=[(4sinx)(2+cosx)(2+cosx)(4sinx)(2+cosx)2]1=[4cosx(2+cosx)(sinx)(4sinx)(2+cosx)2]1=[8cosx+4cos2x+4sin2x(2+cosx)2]1=8cosx+4(cos2x+sin2x)(2+cosx)21=8cosx+4(2+cosx)21=8cosx+4(2+cosx)2(2+cosx)2=8cosx+4(4+cos2x+4cosx)(2+cosx)2=4cosxcos2x(2+cosx)2Puttingf(x)=04cosxcos2x(2+cosx)2=0so,cosx(4cosx)=0cosx=0and4cosx=0[but1cosx1]cosx=4isnotpossibleNow,x=(2n+1)π2,nZputtingn=1x=(2(1)+1)π2=3π2Puttingn=2x=(2(2)+1)π2=5π2since,x(0,2π)So,valueofxareπ2andπ2Thus,wedividetheinterval(0,2π)intothreedisjointinterval(0,π2),(π2,3π2)and(3π2,2π)Hence,f(x)isstrictilyincreasingon(0,π2)&(3π2,2π)and,f(x)isstrictlydecreasingon(π2,3π2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon