Wehavef(x)=4sinx−2x−xcosx2+cosxsince,wehavetofindincrasinganddecreasingweconsidertheopeninterval(0,2π)Atfirstfindingf′(x)f(x)=4sinx−2x−xcosx2+cosx=4sinx−x(2+cosx)2+cosx=4sinx2+cosx−x(2+cosx)2+cosx=4sinx2+cosx−xTherefore,f′(x)=ddx(4sinx2+cosx−x)=ddx(4sinx2+cosx)−d(x)dx=ddx(4sinx2+cosx)−1=[(4sinx)′(2+cosx)−(2+cosx)′(4sinx)(2+cosx)2]−1=[4cosx(2+cosx)−(−sinx)(4sinx)(2+cosx)2]−1=[8cosx+4cos2x+4sin2x(2+cosx)2]−1=8cosx+4(cos2x+sin2x)(2+cosx)2−1=8cosx+4(2+cosx)2−1=8cosx+4−(2+cosx)2(2+cosx)2=8cosx+4−(4+cos2x+4cosx)(2+cosx)2=4cosx−cos2x(2+cosx)2Puttingf′(x)=0∴4cosx−cos2x(2+cosx)2=0so,cosx(4−cosx)=0cosx=0and4−cosx=0[but−1≤cosx≤1]cosx=4isnotpossibleNow,x=(2n+1)π2,n∈Zputtingn=1x=(2(1)+1)π2=3π2Puttingn=2x=(2(2)+1)π2=5π2since,x∈(0,2π)So,valueofxareπ2andπ2Thus,wedividetheinterval(0,2π)intothreedisjointinterval(0,π2),(π2,3π2)and(3π2,2π)Hence,f(x)isstrictilyincreasingon(0,π2)&(3π2,2π)and,f(x)isstrictlydecreasingon(π2,3π2)