Find the intervals in which (x−3)(x2−1)>0
(−1,1)
(3,∞)
(x−3)(x2−1)=(x−3)(x−1)(x+1)Let P=(x−3)(x−1)(x+1)
Find the points on the number line where P=0
P=0⇒x ϵ {−1,1,3}
Split the number line into 4 using these points.
(−∞,−1), (−1,1), (1,3) & (3,∞)(−∞,−1): (x−3)<0, (x−1)<0 & (x+1)<0⇒P<0(−1,1): (x−3)<0, (x−1)<0 & (x+1)>0⇒P>0(1,3): (x−3)<0, (x−1)>0 & (x+1)>0⇒P<0(3,∞): (x−3)>0, (x−1)>0 & (x+1)>0⇒P>0
∴ P>0, when x ϵ (−1,1)∪(3,∞)