Question
Find the intervals in which the following functions are increasing or decreasing.
(i) f(x) = 10 − 6x − 2x2
(ii) f(x) = x2 + 2x − 5
(iii) f(x) = 6 − 9x − x2
(iv) f(x) = 2x3 − 12x2 + 18x + 15
(v) f(x) = 5 + 36x + 3x2 − 2x3
(vi) f(x) = 8 + 36x + 3x2 − 2x3
(vii) f(x) = 5x3 − 15x2 − 120x + 3
(viii) f(x) = x3 − 6x2 − 36x + 2
(ix) f(x) = 2x3 − 15x2 + 36x + 1
(x) f(x) = 2x3 + 9x2 + 12x + 20
(xi) f(x) = 2x3 − 9x2 + 12x − 5
(xii) f(x) = 6 + 12x + 3x2 − 2x3
(xiii) f(x) = 2x3 − 24x + 107
(xiv) f(x) = −2x3 − 9x2 − 12x + 1
(xv) f(x) = (x − 1) (x − 2)2
(xvi) f(x) = x3 − 12x2 + 36x + 17
(xvii) f(x) = 2x3 − 24x + 7
(xviii)
(xix) f(x) = x4 − 4x
(xx)
(xxi) f(x) = x4 − 4x3 + 4x2 + 15
(xxii) f(x) = 5x3/2 − 3x5/2, x > 0
(xxiii) f(x) = x8 + 6x2
(xxiv) f(x) = x3 − 6x2 + 9x + 15
(xxv)