(c)
f(x)=−2x3−9x2−12x+1∴f′(x)=−6x3−18x2−12=−6(x2+3x+2)=−6(x+1)(x+2)Now,f′(x)=0⇒x=−1 and x=−2Points x=−1 and x=−2 divide the real line into three disjoint intervalsi.e., (−∞,−2)(−2,−1) and (−1,−∞).In intervals (−∞,−2) and (1,−∞) i.e., when x<−2 and x>−1, f′(x)=−6(x+1)(x+2)<0∴ f is strictly decreasing for x<−2 and x>−1. Now, in interval (−2,−1) i.e., when −2<x<−1,f′(x)=−6(x+1)(x+2)>0∴ f is strictly increasing for −2<x<−1.
(d)
f(x)=6−9x−x2
f′(x)=−9−2x
For f to be strictly increasing f′(x)>0⇒2x+9<0⇒x<−92
And for f to be strictly decreasing, f′(x)<0⇒2x+9>0⇒x>−92
(e)
We have,
f(x)=(x+1)3(x−3)3
f′(x)=3(x+1)2(x−3)3+3(x−3)2(x+1)3
=3(x+1)2(x−3)2[x−3+x+1]
=3(x+1)2(x−3)2(2x−2)
=6(x+1)2(x−3)2(x−1)
Now,
f′(x)=0⇒x=−1,3,1
The points x=−1,x=1, and x=3 divide the real line into four disjoint intervals
i.e.,(−∞,−1),(−1,1),(1,3) and (3,∞).
In intervals (−∞,−1) and (−1,1), f′(x)=6(x+1)2(x−3)2(x−1)<0
∴ f is strictly decreasing in intervals (−∞,−1) and (−1,1).
In intervals (1,3) and (3,∞)f′(x)=6(x+1)2(x−3)2(x−1)>0
∴ f is strictly increasing in intervals (1,3) and (3,∞).