The given function is f( x )=2 x 3 −3 x 2 −36x+7
Differentiate the function with respect to x.
f ′ ( x )=6 x 2 −6x−36 =6( x 2 −x−6 ) =6( x+2 )( x−3 )
Substitute f ′ ( x )= 0 to obtain the point of maxima or minima.
f ′ ( x )=0 6( x+2 )( x−3 )=0 x=−2 or 3
Now, the points 2 and -3 divide the real line in three different intervals given by,
(a)
In the interval ( −∞,−2 ) and ( 3,∞ ) ,
f ′ ( x )>0 6 x 2 −6x−36>0
Thus, f( x ) is strictly increasing in the interval ( −∞,−2 ) and ( 3,∞ ).
(b)
In the interval ( −2,3 ),
f ′ ( x )<0 6 x 2 −6x−36<0
Thus, f( x ) is strictly decreasing in the interval ( −2,3 ).