Find the intervals in which the function f given by f(x)=2x3−3x2−36x+7 is
a) strictly increasing
b) strictly decreasing
Given, f(x)=2x3−3x2−36x+7
⇒ Differentiating w.r.t. x, f′(x)=ddx(2x3−3x2−36x+7)
=2.3x2−3.2x−36.1+0=6x2−6x−36=6(x2−x−6)
⇒f′(x)=6(x−3)(x+2)
On putting f'(x)=0 we get 6(x−3)(x+2)=0⇒x=3 and -2
which divides real line into three intervals namely (−∞,−2)(−2,3) and (3,∞).
IntervalsSign of f′(x)Nature of f(x)(−∞,−2)(−)(−)=+veStrictly increasing (∵x<−2 i.e.,x is −3,−4,−5…for these values,(x−3) and (x−2) both will negative)(−2,3)(−)(+)=−veStrictly decreasing (∵3>x>−2 i.e,x is 1,2,,0,−1…for these values (x−3) will be negative and(x+2) will be positive)(3,∞)(+)(+)=+veStrictly incresing (∵x>3 i.e.,x is 4,5,6,…for these) values (x−3) and (x+2) both are positive)
Hence, the given function f is strictly increasing in intervals (−∞,−2) and (3,∞), while function f is strictly decreasing in the interval (-2, 3).