The given function is
f(x)=2x3−3x2−36x+7
f′(x)=6x2−6x−36=6(x2−x−6)=6(x+2)(x−3)
∴f′(x)=0⇒x=−2,3
The points x=2 and x=3 divide the real line into three disjoint intervals
i.e., (−∞,−2),(−2,3), and (3,∞).
In intervals (−∞,−2) and (3,∞),f′(x)>0
while in interval (−2,3),f′(x)<0
Hence, the given function (f) is strictly increasing in intervals
(−∞,−2) and (3,∞) while function (f) is strictly decreasing in interval (−2,3).